Semrock is closed for President's Day, Monday February 19th. All orders placed will be process on Tuesday.
Welcome, Guest: Login or Register My Cart (0)

Stimulated Raman Scattering (SRS)

In SRS microscopy, like CARS microscopy, both the pump and Stokes photons are incident on the sample. If the frequency difference SRS = pump - Stokes matches a molecular vibration (vib) stimulated excitation of the vibrational transition occurs. Unlike CARS, in SRS there is no signal at a wavelength that is different from the laser excitation wavelengths. Instead, the intensity of the scattered light at the pump wavelength experiences a stimulated Raman loss (SRL), with the intensity of the scattered light at the Stokes wavelength experiencing a stimulated Raman gain (SRG). The key advantage of SRS microscopy over CARS microscopy is that it provides background-free chemical imaging with improved image contrast, both of which are important for biomedical imaging applications where water represents the predominant source of nonresonant background signal in the sample.




Figure 1: Stimulated Raman scattering (SRS) energy diagram for the SRS four-wave mixing process (right). Label-free stimulated Raman gain imaging of lipids in human melanocytes. Image courtesy of Andreas Volkmer (University of Stuttgart, Germany).

Learn more about stimulated Raman scattering: 

Simulated Raman Scattering Microscopy Offers High Sensitivity In Real-Time Imaging
Medical News Today

Vibrational imaging based on stimulated Raman scattering microscopy
New Journal of Physics

 

Stimulated-Raman-Scattering SRS Stimulated-Raman-Loss SRL